REVISED DUST CONTROL PLAN
PARCEL A PHASE I DEVELOPMENT
HUNTERS POINT SHIPYARD
SAN FRANCISCO, CALIFORNIA

Prepared by

Geosyntec consultants
engineers | scientists | innovators
1111 Broadway, 6th Floor
Oakland, California 94607

Project Number WR1366
11 December 2013
Revised Dust Control Plan
Parcel A Phase I Development
Hunters Point Shipyard
San Francisco, California

Prepared by
Geosyntec Consultants, Inc.
1111 Broadway, 6th Floor
Oakland, California 94607

Randolph C. Brandt, PG
Principal

Project Number: WR1366
13 December 2013
TABLE OF CONTENTS

1. INTRODUCTION .. 1
 1.1 Document Objective .. 1
 1.2 Regulatory Basis .. 2

2. BACKGROUND .. 5
 2.1 Site Description ... 5
 2.2 Site History .. 5
 2.3 Phase I Scope of Work .. 6
 2.4 No Visible Dust Goal .. 7

3. POTENTIAL SOURCES OF EMISSIONS ... 8

4. GENERAL DUST CONTROL METHODS .. 9
 4.1 Visible Dust Monitoring During Site Activities .. 9
 4.1.1 Visible Dust Crossing the Property Boundary 9
 4.1.2 On-Site Visible Dust ... 10
 4.2 Windblown Visible Dust during Inactive Periods 10
 4.3 Construction Traffic .. 10
 4.3.1 Trackout Prevention .. 10
 4.3.2 Traffic Control .. 11
 4.3.3 Off-Site Transport ... 13
 4.4 Potential Dust Generating Activities ... 14
 4.4.1 Site Preparation and Grading .. 14
 4.4.2 Crushing .. 15
 4.4.3 Demolition .. 15
 4.4.4 Excavation Activities .. 16
 4.4.5 Loading ... 16
 4.4.6 Material Stockpiles.. 17
 4.4.7 Foundation Work .. 17
 4.5 Post-Construction Stabilization of Disturbed Areas.................................... 18
 4.6 Additional Requirements for Serpentine Material................................. 18

5. MONITORING AND RECORDS ... 20
5.1 General ... 20
5.2 Dust Monitoring Procedures ... 20
 5.2.1 Daily Visual Monitoring During Earth Disturbing Activities 20
 5.2.2 Perimeter Air Monitoring Instruments ... 21
 5.2.3 Independent Third Party ... 22
5.3 Recordkeeping and Reporting ... 22
 5.3.1 Particulate Monitoring Instruments Recordkeeping and Reporting 22
 5.3.2 Independent Third Party Recordkeeping and Reporting 23
5.4 Community Complaints .. 23

6. REFERENCES .. 24

LIST OF FIGURES

Figure 1: Parcel Locations and Sensitive Receptors within 1000 Feet
Figure 2: Wind Rose

LIST OF APPENDICES

Appendix A: Particulate Monitoring System and Approval Form
Appendix B: Independent Third Party Inspection Checklist
ACRONYMS AND ABBREVIATIONS

APCO Air Pollution Control Officer
ATCM Asbestos Airborne Toxic Control Measure
BAAQMD Bay Area Air Quality Management District
BMP best management practice
CCR California Code of Regulations
DTSC Department of Toxic Substance Control
EHS Environmental Health Section
EIR Final Environmental Impact Report
HEPA high-efficiency particulate air
HPS Hunters Point Shipyard
km/hr kilometers per hour
mph miles per hour
PM-10 Particulate Matter (on the order of ~10 micrometers or less)
RACM regulated asbestos-containing material
ROD Record of Decision
RWQCB Regional Water Quality Control Board
SFDPh San Francisco Department of Public Health
SWPPP Storm Water Pollution Prevention Plan
USEPA United States Environmental Protection Agency
1. INTRODUCTION

This Revised Dust Control Plan (Revised DCP) has been prepared and submitted by Geosyntec Consultants, Inc. (Geosyntec) under contract to and on behalf of HPS Development Co., LP (HPS Development) as part of the planning process for proposed site development activities at the Hunters Point Shipyard (HPS) Parcel A (the Site) in San Francisco, California. Parcel A is located along the northern portion of the former HPS and comprises 75 total acres that is made up of two non-contiguous sub-parcels. The first, commonly referred to as the Hilltop Parcel, contains active development areas as well as adjoining areas that contain existing buildings 101, 110 and 808. The second, referred to as the Hillside Parcel, contains future development parcels. The Hilltop parcel is 56 acres and the Hillside Parcel is 19 acres. The Site is depicted on Figure 1. To date, HPS Development has completed demolition of former structures on both the Hilltop and Hillside Parcels, executed a mass grading and retaining wall installation project and has completed construction of the backbone infrastructure that will support future development of the Site. The Hilltop parcel is currently undergoing vertical development.

1.1 Document Objective

Since the initial preparation of the project DCP, several aspects of the project and regulatory environment have changed. In response, this 2013 Revision to the DCP was prepared to:

- Update the regulatory background section of the document with information about updated approvals and changes in the regulatory framework that have occurred over the past several years; and
- Update air monitoring requirements based on six years of implementation and analysis of air monitoring data that have been collected during previous demolition and construction activities at Parcel A.

This Revised DCP has been prepared in accordance with the requirements established in Article 31 of the City and County of San Francisco Health Code and the corresponding Implementing Regulations and certain Bay Area Air Quality Management District (BAAQMD) regulations often applicable to redevelopment activities, as further described herein. This plan addresses dust control measures that will be implemented during soil disturbing activities.
Pursuant to Article 31, this plan only applies to dust control associated with soil disturbing activities on Parcel A. In accordance with the requirements of Article 31, this plan was prepared under the supervision of a professional geologist registered in the State of California.

1.2 Regulatory Basis

The Hunters Point Shipyard Reuse Final Environmental Impact Report 2000 (FEIR 2000) includes mitigation measures requiring actions that will reduce or eliminate adverse environmental impacts during development of Parcel A. These mitigation measures were adopted in a Mitigation Monitoring and Reporting Program, dated 19 January 2000. The Disposition and Development Agreement incorporates Final EIR mitigation measures that are relevant for Phase I development on Parcel A and includes the commitments for implementing mitigation measures set forth in Section 20 of the Disposition and Development Agreement and in the EIR Addendum, dated 19 November 2003.

In the summer of 2010, the City certified the Candlestick Point-Hunters Point Shipyard Phase II Project Final Environmental Impact Report 2010 (CP-HPS Phase II FEIR 2010), which includes mitigation measures to be implemented during development of some portions of Parcel A on the southern edge of Parcel A-1 Hilltop. These mitigation measures were adopted in the Mitigation Monitoring and Reporting Program, dated July 2010.

The applicable mitigation measures for dust control from FEIR 2000 and CP-HPS Phase II FEIR 2010 and the requirement to comply with them were incorporated into the amendments to the San Francisco Health Code Article 31 and corresponding Implementing Regulations that were adopted by the Board of Supervisors in the summer of 2010. Submittal of this Revised DCP and approval by the San Francisco Department of Public Health (SFDPH) is intended to meet the applicable requirements of Article 31 and the Implementing Regulations. SFDPH approval of this plan will also meet applicable requirements of San Francisco Health Code Article 22B.

This Revised DCP specifically identifies the Best Management Practices (BMPs) that will be implemented to reduce air particulate emissions resulting from soil disturbance or excavation associated with grading, utility work, construction of site infrastructure, and foundation construction. This plan also includes monitoring and reporting requirements.
This Revised DCP incorporates requirements of the following applicable codes and regulations:

- California Code of Regulations (CCR) Title 17, Section 93105, the Asbestos Airborne Toxic Control Measure (ATCM) for Construction, Grading, Quarrying, and Surface Mining Operations;
- Bay Area Air Quality Management District (BAAQMD) Regulation 2, Permits;
- BAAQMD Regulation 6, Particulate Matter and Visible Emissions;
- BAAQMD Regulation 11, Rule 14, Asbestos Containing Serpentine;
- City and County of San Francisco Building Code Section 106A.3.2.6, Construction Dust Control;
- City and County of San Francisco Health Code Article 22B;
- City and County of San Francisco Health Code Article 31 and Implementing Regulations;
- City and County of San Francisco Order Number 171,378;
- FEIR 2000 Mitigation Measure 2.B: Construction PM10;
- FEIR 2000 Mitigation Measure 8.A: Handling Naturally Occurring Asbestos during Construction; and

Collectively, these regulations and Mitigation Measures specify a goal of “no visible dust” emissions from the Site and outline BMPs required to meet this goal.

Because the Site is within an area that could contain naturally occurring asbestos in the soil and serpentine rock, CCR Title 17, Section 93105 (ATCM) and BAAQMD Regulation 11, Rule 14 apply to ground disturbing activities at the Site. ATCM includes, among other things, the requirement for submission of an Asbestos Dust Mitigation Plan for BAAQMD approval prior to grading activities. The ATCM also includes very specific practices to be implemented during construction. Mitigation Measure 8.A also provides BMPs for handling serpentine material, and BAAQMD Regulation 11, Rule 14 prohibits the use or sale of asbestos-containing serpentine materials for road surfacing.
Contractors selected to perform construction will be responsible for obtaining applicable permits and strictly complying with permit conditions as described in the project specifications.
2. BACKGROUND

2.1 Site Description

Parcel A, as set forth in the Quitclaim Deeds for the Hilltop Parcel and the Hillside Parcel of the Hunters Point Shipyard, both recorded on 3 December 2004, together consist of approximately 75 acres and both are located in the northern portion of the HPS. The Hilltop Parcel (56 acres) is located on a topographic high relative to the surrounding portions of the former Hunters Point Shipyard. To the east of the Hilltop is Parcel B. To the southeast is UC-2 and Parcel C. To the south are Parcel D-1 and Parcel G. To the west are Parcels E and E-2. Existing residential neighborhoods border the Hilltop Parcel on the north.

The Hillside Parcel (19 acres) is also located on a topographic high relative to the surrounding portions of the former Hunters Point Shipyard. To the north, east and west of the Hillside are existing residential neighborhoods. To the west is Parcel E-2.

Historically, the dominant land use of Parcel A was residential and non-industrial. The Navy-owned residential structures were demolished prior to Site grading and backbone infrastructure construction. During the mass grading phase of the project, vertically-oriented concrete block keystone retaining walls were installed and newly graded slopes on both the Hilltop and Hillside Parcels were seeded to achieve a vegetative cover. During the utility installation phase of the project, concrete road base and curb and gutter were installed across all areas of the Hilltop Parcel. The portion of the Hilltop Parcel bordering Donahue Street includes sidewalk installation. At the Hillside Parcel utility installation is partially complete. At the conclusion of utility installations, the entire Site was stabilized by a combination of hardscape (i.e., future roads, retaining walls, curb, gutter and portions of sidewalk) and a vegetative cover.

Figure 1 presents the Parcel locations and sensitive receptors within 1000 feet.

2.2 Site History

The United States Department of the Navy (Navy) acquired the title to the land known as HPS in 1940 and began developing its shipyard activities, including shipbuilding, repair, and maintenance. Buildings at HPS included office and commercial buildings such as facilities for warehousing, fuel storage and distribution, and machining and metal fabrication. Between 1976 (the point at which the Navy ceased its operations) and
1986, the Navy leased most of HPS to a private ship-repair company, which conducted activities similar to the Navy’s.

HPS has been divided into twelve parcels (Parcels A, B, C, D-1, D-2, E, E-2, F, G, UC-1, UC-2 and UC-3) for purposes of remediation. Multiple investigations have been performed at HPS for over 20 years. Between 1984 and 1993, initial preliminary assessments were conducted facility-wide at HPS. Based on the results of these initial preliminary assessments, subsequent preliminary assessments were performed within Parcel A to further evaluate possible sites for inclusion in the Parcel A remedial investigation program.

In 1995, the Navy performed a remedial investigation of Parcel A to characterize the nature and extent of chemical contamination in the parcel. The United States Environmental Protection Agency (USEPA), the Department of Toxic Substance Control (DTSC), and Regional Water Quality Control Board (RWQCB) participated and were consulted throughout the Parcel A remedial investigation process and the development of the Parcel A Record of Decision (ROD). USEPA concurred with the findings of the Parcel A investigations on 8 November 1995 and signed the Parcel A ROD on 29 November 1995. The DTSC and RWQCB also concurred and signed the Parcel A ROD on 28 November 1995. The Parcel A ROD approved by the USEPA and co-regulatory agencies is the decision document demonstrating that the Navy has taken all necessary remedial actions to comply with Section 120(h)(3) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980.

A final Finding of Suitability to Transfer Parcel A was signed in January 2001. A revision to the Finding of Suitability to Transfer was completed in March 2002; a second revision was completed in March 2004; and a third revision completed in September 2004. These revisions include a boundary map update for Parcel A, as well as additional information about radiological clearance and other historic activities within Parcel A.

2.3 **Phase I Scope of Work**

Parcel A Phase I work will consist of development of horizontal infrastructure to support later development, parks construction, and vertical construction under the control of HPS Development Co., LP. The Site activities will consist of demolition, site grading, utility system installation, paving, foundation excavation, and vertical construction of housing units and artist studio space.
For purposes of clarity, the following terms and related definitions are used throughout the Revised DCP:

- **Parcel A** – This term comprises both the Hilltop and Hillside Parcels. It is 75 acres in size.
- **Project Area** – An interchangeable term used alongside Parcel A
- **Hilltop Parcel** – 56 acre parcel currently undergoing vertical development. Includes existing buildings 101, 110 and 808.
- **Hillside Parcel** – 19 acre parcel currently idle and awaiting development (completion of all infrastructure components and vertical development).
- **Development Block** – Both the Hilltop and Hillside Parcels have been broken down into numbered development blocks (e.g., Block 51 within the Hilltop Parcel)
- **Construction Site** – Any area within the Hilltop or Hillside Parcels that is undergoing active construction. This term also includes support/staging areas immediately adjacent to the active construction.
- **Future Street** – Any street within the Hilltop or Hillside Parcel that is either already in place or will be installed via future construction efforts
- **Future Park** – A number of regional and pocket parks are planned at both the Hilltop and Hillside Parcels. Regional parks are larger in size and pocket parks encompass approximately 10,000 square feet and are located immediately adjacent to future Development Blocks.
- **Building 101, 110 and 808** – Remaining buildings on the Hilltop Parcel. Buildings 101 and 110 are occupied by artists or local businesses. Building 808 is currently vacant.

2.4 No Visible Dust Goal

The dust control measures set forth in this plan are intended to achieve a goal of no visible dust emissions associated with soil disturbance, movement, or excavation of soil, to the extent required by the applicable regulations identified above.
3. POTENTIAL SOURCES OF EMISSIONS

Planned site activities have the potential to generate particulate emissions in the form of fugitive dust emissions. Possible sources of particulate emissions include:

- **Construction Traffic** – Movement of construction equipment around unpaved portions of the construction area is capable of creating fugitive dust emissions in excavated or cleared areas. There is also the potential for vehicular traffic on paved or unpaved roads and parking lots to produce fugitive dust emissions.

- **Demolition** – Demolition of existing above and below grade structures can produce fugitive dust emissions via excavation efforts, vehicular traffic traveling on un-paved portions of the Site and material handling operations.

- **Site Preparation and Foundation Work** – Grading, excavation of footings and foundations, and backfilling operations can produce both fugitive dust emissions.

- **Trenching Activities** – Excavation of trenches for the installation of underground utilities can cause fugitive dust emissions.

- **Material Stockpiles** – Stockpiles of excavated soil from trenching activities may contribute to windborne dust emissions.

- **Cleanup and Grading** – Backfilling, grading, and re-vegetating of the excavated areas may produce both fugitive dust emissions.
4. GENERAL DUST CONTROL METHODS

While all parties understand that soil disturbance and excavation activities, by their nature, will produce dust, Site controls will be used to mitigate visible dust as it is generated in an effort to achieve the no visible dust goal. This section lists methods for control of fugitive dust generated by soil disturbance or excavation including:

- Dust entrained during on-site travel on paved and unpaved surfaces;
- Dust entrained during site grading, excavation, crushing, demolition, and back-filling at the construction site;
- Dust entrained during aggregate and soil stockpiling, loading, and unloading operations; and
- Wind erosion of areas disturbed during construction activities.

4.1 Visible Dust Monitoring During Site Activities

This section establishes the steps that must be taken toward achieving the goal of no visible dust from soil disturbance or excavation in terms of the amount of time permitted to address visible dust plumes. The criteria in this section apply to an active Construction Site when equipment and personnel are driving on the Site and performing work activities. The “initial observation” starts the clock for the required response measures described below. The “initial observation” is the time any of the following personnel observe visible dust: (a) workers who are disturbing soils or excavating for the permitted activity or (b) any HPS Development Co., LP representative, supervisor, contractor, subcontractor or consultant with responsibility for monitoring the permitted activity including the independent third party.

4.1.1 Visible Dust Crossing the Property Boundary

In the event visible dust from soil disturbance or excavation is observed crossing the property boundary, the following procedures will be followed to ensure adequate mitigation measures are in place to address the dust:

1. The specific source of the emissions will be immediately shut down and a more aggressive application of the existing mitigation measures described in this Section 4 will be directed.
2. Once the mitigation measures have been applied, the source of emissions will resume and observations will be conducted to verify that the mitigation measures were successful.

4.1.2 On-Site Visible Dust

In the event visible dust from soil disturbance or excavation is observed on-site, but does not cross the property boundary, the following procedures will be followed to ensure adequate mitigation measures are in place to address the dust:

1. A more aggressive application of the existing mitigation measures described in this Section 4 or additional methods of dust suppression will be directed to the specific source of emissions within 60 minutes of the initial observation.

2. If despite these more aggressive and/or additional measures the visible dust emissions continue for 90 minutes from the time of the initial observation, the specific source of emissions will be temporarily shut down until the implemented dust control mitigation is effective or, due to changed conditions, no longer necessary.

4.2 Windblown Visible Dust during Inactive Periods

The standards in this section apply on weekends and holidays or any other times when no equipment and personnel are performing work activities at the Construction Site. In the event of observations of windblown visible dust plumes from soils originating on the Construction Site, mitigation measures described in this Section 4 will be directed by the contractor within less than 4 hours of making the observation. Mitigation measures will be applied until the visible dust plumes originating from the Construction Site are minimized or eliminated. Any observations of visible dust originating from the Construction Site during inactive periods should be reported to the HPS Development Hotline at 866-5-Lennar.

4.3 Construction Traffic

4.3.1 Trackout Prevention

Trackout of loose materials will be controlled using gravel pads along with a tire washing/cleaning station installed at the access point from the unpaved portion of the project Site to a paved road to prevent tracking of soil onto public roadways. The
stabilized construction exit (gravel pads) will be installed according to the specifications provided in the Erosion and Sediment Control Plan of the Storm Water Pollution Prevention Plan (SWPPP) for the Site. All vehicle tires will also be inspected and washed as necessary to prevent trackout (at gravel ramps of at least 50 feet long) prior to entering the paved roadways.

4.3.2 Traffic Control

Mitigation measures and BMPs will be followed to control fugitive dust emissions from construction traffic traveling on unpaved portions of the Construction Site and from construction traffic traveling from unpaved to paved portions of the Project Area as described in the following sub-sections.

4.3.2.1 Travel on Unpaved Surfaces

To the extent practicable, travel on unpaved surfaces within the construction Site will be minimized and limited only to necessary construction vehicles. Fugitive dust emissions from construction traffic traveling on unpaved surfaces will be controlled with the following mitigation measures and BMPs:

1. All unpaved roads in the project construction Site will be watered at the start of each work day and prior to the movement of any equipment traveling on the unpaved portions of the active construction Site. All of these same unpaved roads will be watered at the end of the work day. In addition, active unpaved roads will be watered every two hours or frequently enough to maintain moisture conditions adequate to prevent the release of fugitive dust. The frequency of watering can be reduced, as appropriate, during periods of precipitation.

2. Vehicle speeds will be limited to 10 miles per hour (mph) (16 kilometers per hour [km/h]) within the construction Site. Speed limit signs will be posted at the construction Site entrances.

3. Implementation of erosion control measures identified in the Construction SWPPP, will control fugitive dust emissions from public roadways and parking areas.

4. Gravel access pads will be constructed in the temporary stockpile locations. It will be the responsibility of the construction contractor to construct and maintain functional gravel access pads.
5. Personal vehicles will not be parked within unpaved portions of the Site. Personal vehicles may be parked only on temporary graveled or paved parking areas.

6. To the extent possible, construction work vehicles (e.g. pick-up trucks) will park on paved or graveled areas within the site to avoid driving in unpaved areas.

4.3.2.2 Travel on Paved Surfaces

The following mitigation measures will be followed to control fugitive dust emissions from construction traffic traveling on paved surfaces:

1. The main access and egress routes to the construction Site, which will be used by construction employees and delivery trucks, will be paved prior to the initiation of construction.

2. No construction vehicles will be allowed to enter or exit the unpaved portions of the Construction Site except through a treated exit (gravel pad and vehicle brush/wash station). Gravel pads will be installed at all unpaved area access/egress points to prevent tracking of soil on to public roadways. Wheel brushing stations will be constructed and used if track-out cannot be prevented by the gravel pad only. The wheel brushing stations will be upgraded to wheel washing stations if necessary to prevent track-out.

3. Construction areas adjacent to and above grade from any paved roadway will be treated with BMPs, as specified in the Construction SWPPP.

4. Any visible track-out on a paved road at any location where vehicles exit the Construction Site must be removed. If visible trackout is noted, removal must be done using wet sweeping, a high-efficiency particulate air (HEPA) filter-equipped vacuum device or other effective means of removing the trackout. The use of dry rotary brushes is expressly prohibited except where preceded or accompanied by sufficient wetting to limit the visible dust emissions. Use of blower devices is expressly forbidden.

5. All paved roads within or adjacent to the Construction Site will be swept twice daily with a wet sweeper if the roads were used by any construction vehicles that day or if there is evidence of visible dust (windblown or otherwise).
4.3.2.3 Additional Mitigation Measures for Traffic Control

If any of the above mitigation measures listed in Sections 4.1.2.1 through 4.1.2.2 fail to properly control fugitive dust emissions, one or more of the following reasonably available control measures will be applied:

1. Unpaved roads within active portions of the construction Site will be watered or treated with dust control solutions to minimize the generation of visible dust due to wind and vehicle traffic. If watering is the chosen method, it will occur every two hours and at the end of the day. If another liquid suppressant is chosen, then the manufacturer’s application instructions will be followed.

2. Paved portions of the Construction Site will be swept at least twice daily with a wet sweeper and more frequently as necessary to control windblown dust and dust generated by vehicle traffic. Streets adjacent to the Construction Site will be swept as necessary to remove accumulated dust and soil. Water may also be applied to the paved roads if necessary to control fugitive dust.

3. Physical or chemical stabilization will be applied to control dust on unpaved roads if necessary.

4. Gravel, re-crushed/recycled asphalt or other material with low fines content (less than 5 percent) will be applied at a thickness of 3 or more inches, if necessary. Serpentine-containing material will not be used for this purpose.

5. Vehicle trips on unpaved surfaces will be reduced.

4.3.3 Off-Site Transport

All vehicles that are used to transport solid bulk material and that have the potential to cause visible fugitive dust emissions will be covered with a tarp cover, or the materials will be sufficiently wetted and loaded onto the trucks in a manner to provide at least 1 foot of freeboard. Trucks carrying loose soil or sand will be covered before they leave the construction Site, and on-Site vehicle speeds will be limited to 10 mph (16 km/h) or lower in unpaved construction areas.

Vehicles loads will be checked to ensure that they are appropriately covered and to remove any excess material on the shelf or exterior surfaces of the cargo compartment. All off-site haul trucks will access the Construction Sites via paved access roads and established gravel pads. Every off-site haul truck will proceed through the
decontamination gravel pad/tire cleaning area prior to departure from the Construction Site. Site construction personnel will be stationed at the access point to monitor inflow/outflow to and from the Site. They will be responsible for inspecting all vehicles exiting and performing the cleaning of the tires.

4.4 Potential Dust Generating Activities

These sections describe the potential dust generating activities that may occur within the project boundaries and the various dust control techniques that will be used during such activities.

In addition, the perimeter of the active Construction Site will have dust curtains, plastic tarps, or windbreaks installed in areas of active construction in an effort to reduce the wind velocity at the border of the Construction Site.

4.4.1 Site Preparation and Grading

Fugitive dust emissions from site preparation and grading activities will be controlled using the following methods:

1. During clearing and grubbing, surface soils will be pre-wet to the depth of anticipated cut where equipment will be operated. All work areas will be watered prior to the start of excavation, grading, or movement of any equipment (other than water trucks). The frequency of watering can be reduced or eliminated, as appropriate, during periods of precipitation. Soil moisture content will be sufficiently maintained to minimize fugitive dust creation. For construction fill areas which have an optimum moisture content for compaction, completion of the compaction process will be performed as expeditiously as possible to minimize the release of fugitive dust.

2. If compaction will not take place immediately following clearing and grubbing, the surface soil will be stabilized with dust palliative and water to form a crust on the soil surface.

3. Prior to completion of grading, water will be applied to any disturbed areas as needed to prevent visible emissions.

4. Graded areas will be stabilized with chemical stabilizers within 5 working days of grading completion. Seed and water all unpaved, inactive portions of the lot
or lots under construction to maintain a grass cover if they are to remain inactive for long periods during building construction.

5. Halt all clearing, grading, earthmoving, and excavating activities during periods of sustained strong winds (hourly average wind speeds of 25 mph (40 kilometers per hour \[km/h\]) or greater).

6. Limit the area subject to excavation, grading or other construction activity at any one time. Cover on-site storage piles of loose soil or sand.

7. For inactive disturbed surfaces, the following dust control methods will be used:
 a. A dust palliative will be applied in sufficient quantity to form a crust and create a stabilized surface.
 b. Backfill material will be wetted, covered, or contained when not actively handled.
 c. Inactive stockpiles (no disturbance of stockpile for more than 7 days) will be wetted, covered or contained;
 d. Excavated materials will be stockpiled, segregated, and managed to facilitate sampling and analysis for NOA content and disposal characterization.

4.4.2 Crushing

In the event that a concrete crusher will be mobilized to the Site to crush and recycle concrete debris resulting from building and roadway demolition, crushing operations will be visually monitored for the appearance of fugitive dust. If dust is being generated, water will be applied to control the dust. Serpentinite materials containing asbestos will not be processed by the crusher.

4.4.3 Demolition

Demolition activities will be monitored daily for the generation of fugitive dust. Water will be applied at the point(s) of demolition to minimize visible dust. The following methods will be utilized to minimize visible dust:

1. Prior to the commencement of daily demolition and material handling operations the active demolition area will be pre-wet.
2. Fugitive dust emissions from material handling and/or loading operations will be controlled by ensuring that all demolished material is adequately wetted during the handling and/or loading process.

3. Cover, wet or stabilize on-site piles of demolition debris.

4. Loader buckets will be emptied slowly and drop height from loader bucket minimized.

5. All loading activities will be halted during periods of sustained strong winds, defined as hourly average wind speeds of 25 mph (40 km/h or greater).

6. Prior to completion of demolition, water or other soil stabilizers will be applied to any disturbed areas as needed to prevent visible emissions.

4.4.4 Excavation Activities

Excavation activities will be visually monitored daily for the generation of fugitive dust. Water will be applied at the point of excavation or drilling to minimize visible dust. The following methods will be utilized to minimize visible dust:

1. Soil will be pre-wetted prior to excavation to minimize visible dust. Additional water will be applied during active excavation, material handling, and loading. Active excavation areas will be wet a minimum of every two hours during dry weather or more frequently as needed. The disturbed area will be watered at the end of the day or a dust palliative can be applied according to manufacturer’s instructions to stabilize the loose soil and prevent the release of fugitive dust.

2. The height from which excavated soil is dropped onto either stockpiles, haul trucks, or dewatering pads will be minimized.

3. As an alternative to watering, dust palliatives may be applied in sufficient quantities to inactive disturbed areas so as to form a crust and prevent the release of fugitive dust.

4.4.5 Loading

Loading activities will be visually monitored daily for the generation of fugitive dust. The following methods will be utilized to minimize visible dust:

1. Fugitive dust emissions from loading operations will be controlled by ensuring that all excavated material is adequately wetted during the loading process.
2. Loader buckets will be emptied slowly and drop height from loader bucket minimized.

3. All loading activities will be halted during periods of sustained strong winds, defined as hourly average wind speeds of 25 mph (40 km/h or greater).

4.4.6 Material Stockpiles

Fugitive dust emissions from soil storage piles will be controlled by using a temporary cover, water, or a chemical dust control agent.

4.4.7 Foundation Work

Subsurface excavation associated with foundation work will be visually monitored daily for the generation of fugitive dust. The following methods will be utilized to control and minimize visible dust:

1. Sprinklers, wobblers, water trucks, or water pulls will be used to pre-water during cut and fill activities.

2. Building foundations will be constructed as soon as possible after grading to minimize fugitive dust emissions, unless other dust control measures are used in the interim.

3. Wind erosion control techniques, such as wind breaks, water/chemical dust suppressants, and vegetation, will be used on all construction areas that may be disturbed. Any wind erosion control techniques used will remain in place until the soil is stabilized or permanently covered with vegetation.

4. For back-filling during earthmoving operations, backfill material will be watered as needed to maintain moisture. If required, backfill soil will be mixed with water prior to moving. Loader buckets will be emptied slowly and drop height from loader bucket minimized. Once backfill material is in place, water will be applied immediately to form a crust, if necessary. A water truck or large hose will be dedicated to back-filling equipment and operations.

5. While clearing forms, single stage pours will be used where allowed. Use of high-pressure air to blow soil and debris from the form will be avoided; instead, water spray, sweeping, and/or an industrial shop vacuum will be used to clear the form.
4.5 **Post-Construction Stabilization of Disturbed Areas**

At the completion of the initial construction activities, any areas where soil is exposed will be covered with one of the following to reduce dust generation on the Site:

1. A vegetative cover;
2. Coverage with a minimum of 3 inches of non-asbestos-containing material; or
3. Hard surface paving.

4.6 **Additional Requirements for Serpentine Material**

The FEIR 2000 Mitigation Measure 8A, Handling Naturally Occurring Asbestos during Construction, includes details on post-excavation stabilization for exposed serpentine material. In a memo to SF Planning Department (SFDPH, June 2011) about this mitigation measure, SFDPH Environmental Health Section (EHS) requires that the exposed serpentine material be covered with one of the following cover types:

1. One foot of clean, non-asbestos-containing fill soil;
2. Hardscape; or
3. Vegetative cover that holds soil in place.

The June 2011 memo also clarifies that MM 8A also specifies “institutional controls” which must be implemented “to prevent future exposure to naturally occurring asbestos from excavation activities.” The purpose of the institutional control requirement is to assure that the post-excavation stabilization measure(s) will remain in place as long as the serpentine material is present. SFDPH EHS concludes in their June 2011 memo that the institutional control requirement is satisfied by the ongoing obligation to comply with the Building Code’s Construction Dust Control and the Health Code’s Article 31 requirements.

In addition, the 2010 Amendments to San Francisco Health Code Article 31 and the corresponding Implementing Regulations contain requirements for submittal of a Serpentinite Cover Plan and the requirement to describe the implementation of this Plan in the required Article 31 Closure Report submittal.

In addition, excavated materials, which will be transported off site, will be analyzed for asbestos content. Materials with greater than 1 percent by-weight asbestos will be
handled and disposed of off-site in accordance with all requirements for proper disposal of asbestos.

BAAQMD Regulation 11, Rule 14 also defines procedures and notifications required if serpentine material is sold for use as a surfacing agent. No serpentine will be used for surfacing material or sold from the Site.

If serpentine waste is scheduled for offhaul and disposal, the following waste management methods, at a minimum, will be used when handling serpentine waste designated as a hazardous pollutant:

1. Keep asbestos-containing waste material adequately wetted at all times during handling and loading.
2. Adhere to requirements of BAAQMD Regulation 11, Rule 2, Section 608 for marking of vehicles used to transport asbestos-containing waste.
3. Maintain waste shipment records as specified in BAAQMD Regulation 11, Rule 2, Section 502.
4. Provide a copy of the waste shipment record to the disposal site owner or operator upon delivery.
5. Contact transporter and/or owner of the disposal site if the waste shipment has not arrived within 35 days of initial acceptance by the transporter as hazardous waste.
6. Provide a written report to the Air Pollution Control Officer (APCO) if the waste shipment is not received within 45 days of initial acceptance by the transporter.
5. MONITORING AND RECORDS

5.1 General

Control of visible dust will be the primary responsibility of the contractor working at the Site. As an additional layer of protection, monitoring to ensure compliance with the provisions of this plan will be performed by an independent third party. HPS Development, or a designee thereof, will provide quality assurance monitoring and will have the authority to direct the contractor to implement the measures outlined below if visible dust is observed. During any monitoring or observation the contractor, HPS Development and/or the independent third party will use the timelines and processes outlined in Section 4 to guide response actions, recordkeeping and descriptions of mitigation measures employed at the Project Area. This section describes the observation, monitoring, recordkeeping and reporting requirements.

5.2 Dust Monitoring Procedures

This section describes monitoring procedures using particulate monitoring instruments and visual observation by the contractor and an independent third party.

Monitoring includes the following activities:

- Daily visual monitoring during earthmoving activities (contractor);
- Perimeter air monitoring using air monitoring instrumentation (third party);
- Quality assurance monitoring (third party)

5.2.1 Daily Visual Monitoring During Earth Disturbing Activities

Daily visual monitoring during all earth disturbing activities is the primary responsibility of the contractor. If criteria are met regarding dust generation at the point of earth disturbance the contractor must follow the processes outlined in Section 4.1 to rectify the particular operation causing the problem. The contractor is encouraged to work directly with the independent third party to communicate the mitigation requirements to workers in the field and to address concerns voiced by regulatory agency staff that may visit the Construction Site from time to time.
5.2.2 Perimeter Air Monitoring Instruments

Prevailing wind at Hunters Point is from the west or southwest and towards the east or northeast as shown on Figure Two. The Hilltop and Hillside parcels are considered two separate work areas and decisions about monitoring can be made independently for each area. In addition, if the potential dust generating activities are contained within even smaller work areas within each parcel then decisions about those areas can be made independently.

Monitoring locations will initially be established based on the prevailing wind directions and will be checked regularly and adjusted if necessary to maintain downwind coverage.

Real-time particulate dust monitors will be used to monitor for particulates. The action level and details of the monitoring instruments, locations, and the monitoring frequency will be submitted by HPS Development and approved by SFDPH EHS based on the Particulate Monitoring System and Approval Form attached in Appendix A. The details of the system (layout, number of monitors, etc.) can be changed, as needed, through email submittal and approval by email from SFDPH EHS. The use of this form and the ability to change the parameters of the monitoring are intended to allow flexibility within the overall objectives of the particulate monitoring program while still meeting or exceeding all health standards.

No particulate monitoring is required during periods of extended rain because rain naturally suppresses dust. No particulate monitoring is required when the construction site is shut down and no work is being conducted and no vehicles are being driven on unpaved surfaces. This is the presumed condition on weekends and holidays.

National Ambient Air Quality Standards (NAAQS) and the California State Ambient Air Quality Standards (CSAAQS) are designed to protect the general public from airborne particulates generated in the urban, suburban and rural environments. The NAAQS and the CSAAQS are not meant to be applied to site specific actions and related air quality but instead are used in an attempt to attain city or region-wide ambient air quality goals for the benefit of the general public. The current standards are:

1. 24 Hour National Ambient Air Quality Standard
- PM-10: 150 micrograms per cubic meter average per 24 hour day (Not to be exceeded more than once per year on average over 3 years)
- PM-2.5: 35 micrograms per cubic meter average per 24 hour day (98th percentile, averaged over 3 years)

2. 24 Hour State Ambient Air Quality Standard
 - PM-10: 50 micrograms per cubic meter average per 24 hour day

It should be noted that the City and County of San Francisco (CCSF) is a non-attainment area for the NAAQS for PM-2.5. CCSF is also a non-attainment area for the CSAAQS for PM-10. Non-attainment areas are areas of the country where air pollution levels persistently exceed the NAAQS as designated by U.S. EPA.

5.2.3 Independent Third Party

The independent third party will observe the potential dust generating activities and implementation of the DCP mitigation requirements and make notations on the Appendix B forms. The details of the independent third party observation schedule can be changed, as needed, through email submittal and approval by email from SFDPH EHS.

5.3 Recordkeeping and Reporting

5.3.1 Particulate Monitoring Instruments Recordkeeping and Reporting

Dust particulate monitoring instruments will be equipped with data loggers. Particulate monitoring data will be reviewed with the contractor on a regular basis. Particulate monitoring data and locations of monitoring instruments will be transmitted to SFDPH on a regular basis with notations made about any irregularities in monitoring equipment or results above the action level and corresponding action taken to mitigate the potential problems. Timing of the submittal of data to SFDPH and review of data with contractor will be specified on the Appendix A Particulate Monitoring System Approval Form.

Electronic submittal of particulate monitoring data will include a statement by appropriate personnel certifying that the data has been reviewed by qualified personnel and noting any levels above approved limits and any actions taken as a result of the results.
5.3.2 **Independent Third Party Recordkeeping and Reporting**

The Independent Third Party will fill out the Inspection Checklist (Appendix B) on a regular basis based on their inspections. The checklist results will be reviewed with the contractor on a regular basis. The Independent Third Party will submit the checklists to SFDPH on a regular basis. The schedule for inspections, review and submittal of the checklists will be specified and approved by SFDPH through the Appendix A Particulate Monitoring System Approval Form.

The Hunters Point Shipyard Project area, and San Francisco in general, is subject to significant daily variation in wind direction and speed. For example, the wind can be calm in the morning and can then increase significantly in the afternoon. Wind Direction will be determined with a wind sock, nearby weather station data, or other similar wind direction monitoring device. This variation in daily wind direction and speed will be documented on the Appendix B checklist. The Appendix B checklist also contains information concerning site activities, descriptions of specific dust mitigation measures and any recommendations for enhanced mitigation measures if found to be necessary. Shut down periods that occur during normal work hours will be noted on Inspection Checklist or other report.

5.4 **Community Complaints**

A publicly visible sign with the telephone number to contact regarding dust, noise, or odor complaints will be posted prior to starting construction and maintained during construction. For general complaints, the contractor will respond and take corrective action within 24 hours.

During hours of active construction phone calls will be answered or returned as soon as possible. During non-work hours phone calls may be diverted to a message machine.
6. REFERENCES

California Air Resources Board, 2005. Revised California Ambient Air Quality Standards for Particulate Matter, 5 April.
FIGURES
A' Hillside
A' Hilltop

05 0 0

Figure 1
Oakland November 2013

RMP Property
Hunters Point, San Francisco, CA

Legend
- Location of Potential Sensitive Receptor
- Parcel Boundary
- 1000 ft Parcel Buffer
APPENDIX A

Particulate Monitoring System and Approval Form
Appendix A

Revised Dust Control Plan
Parcel A Phase I Development,
Hunters Point Shipyard

Particulate Monitoring System

Particulate Monitoring Instrument Details

Real time particulate monitors with data-logging capabilities will be utilized to collect data. The network is initially proposed to consist of a moveable Near Field Monitor and stationary perimeter monitors.

Initial Monitoring Period – Near Field Monitor

With any new and significantly different construction activity, there will be a time period to address and possibly adjust the particulate monitoring network for that action and to ensure construction crews understand the level of required dust control, the criteria for implementing additional mitigation measures and the criteria for temporarily halting work.

This initial monitoring period is marked by the installation of a single downwind real time particulate monitor in close proximity to the dust generating activity. This monitor is called the “Near Field Monitor.” Typically, this initial monitor is placed 40 to 60 feet away from the most active earth-disturbing activity.

In order to take a conservative approach and provide meaningful feedback to the contractor, the Near Field Monitor will be fitted with a real time visual and audible alarm that is triggered at the level and averaging time noted on the Appendix A Approval Form.

The purpose of the Near Field Monitor is to provide real time feedback (most directly via the alarm function) to the contractor during their initial potential dust generating activity and application of related mitigation measures. If the alarm were engaged, this would alert the contractor that more aggressive application of current mitigation measures is required and/or the application of additional mitigation measures are warranted. This feedback loop is intended to educate the contractor on the level of mitigation measures necessary to maintain compliance with the Revised DCP.

The Near Field Monitor is recommended to be used for a minimum of five days at the start of earth-disturbing activity in a new area of the site or by a new construction crew. At the conclusion of the initial monitoring period, use of the Near Field Monitor can cease at the election of Lennar with notification sent to SFDPH. The Near Field Monitor results are not intended to represent the Perimeter Action Levels and require no action other than feedback to the contractor on dust control and mitigation practices and reporting of results to SFDPH.
Perimeter Monitors

At the same time the Near Field Monitor is placed, a perimeter monitor network of real time particulate monitors will also be established. Initially, one monitor will be placed upwind of site activities, one downwind of site activities and one trans-gradient to the wind direction. If new activities arise or come to completion within the same sub parcel (e.g., Hilltop), the perimeter monitor locations may expand or contract accordingly. Changes to location and number of the perimeter monitors must be approved by SFDPH prior to implementation.

The perimeter monitors results will be used to track compliance with the Perimeter Action Level and to guide the selection of additional mitigation measures, if found to be necessary.

Monitoring Frequency for Weeks 1 Through 4

At this time, it is proposed for the first 4 weeks of site activity from approval of these changes the particulate monitoring will continue for each day work occurs.

Monitoring Frequency for Weeks 5 Through 12

Following the first four weeks, and as long as the monitoring has been consistently below the required Action Level and compliance with the Revised DCP has been demonstrated, Lennar may submit a request to SFDPH proposing a revised monitoring schedule that describes a reduced schedule of intermittent particulate monitoring of up to two days per week for up to an additional eight weeks.

Monitoring Frequency After Week 12

Based on the result of the first twelve weeks of particulate monitoring results, Lennar may propose to discontinue particulate monitoring based on demonstrated and ongoing compliance with the Revised DCP. If a cessation of particulate monitoring is approved by the SFDPH, the independent third party observer will still have the obligation to inspect the site activity, record observations and make recommendations for additional mitigation measures on the Appendix B Independent Third Party Inspection Checklist for as long as required.

Monitoring Resumption

Lennar will either start the cycle over again or will propose a new monitoring scheme by expanding or adjusting the already established perimeter monitors for the following reasons:

a) Verified visible dust complaints from tenants, workers or adjacent residents
b) Use of a new construction crew unfamiliar with the required dust control at this site
c) Voluntary election by the contractors or Lennar to restart the particulate monitoring instrumentation
d) Changes in site conditions that might warrant a restart of the particulate monitoring instrumentation
Particulate Monitoring Data Reporting

The particulate data will be reported as described in the Revised DCP and on a schedule as listed in the Appendix A Approval Form. The data reports will include a figure with the monitoring locations. If the monitor locations change due to weather pattern shifts or a shift in site activity, the new locations will be noted and marked on a map attached to the data reports. The data will be reviewed with the contractor on a schedule as approved in the Appendix A approval form.

Independent Third Party Reporting

The Independent Third Party Inspection Checklist (Appendix B) will be completed, reviewed with contractor and submitted to SFDPH as described in the Revised DCP with a schedule as specified on the Appendix A Approval Form.
APPENDIX A
Revised Dust Control Plan
Parcel A Phase I Development,
Hunters Point Shipyard
Particulate Monitoring System
Approval Form

<table>
<thead>
<tr>
<th>DATE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of person submitting request</td>
<td></td>
</tr>
<tr>
<td>Company</td>
<td></td>
</tr>
<tr>
<td>Role on Project</td>
<td></td>
</tr>
<tr>
<td>Contact Information</td>
<td></td>
</tr>
</tbody>
</table>

Proposed Changes from Previous Approval (include only those with changes)

<table>
<thead>
<tr>
<th>Number of days after SFDPH approval received that changes are anticipated to be implemented</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate Monitor Model Number</td>
<td></td>
</tr>
</tbody>
</table>

Near Field Monitor(s)

- Number of Monitors
- Location of Monitors
- Contractor Feedback Level
- Averaging Time
- Frequency of monitoring
- Frequency of submittal of data to SFDPH (excel workbook with data and graph with Action Level depicted)
- Frequency of data review with contractor

PLEASE NOTE: This near field monitor is operated for contractor feedback and may be stopped at any time as long as notice is sent to SFDPH.

Perimeter Monitors

- Number of Monitors
- Location of Monitors
- Perimeter Action Level
- Averaging Time
- Frequency of monitoring
- Frequency of submittal of data to SFDPH
- Frequency of data review with contractor

Independent Third Party Inspection Checklist

- Frequency of Inspections
- Frequency of submittal of
checklists to SFDPH

- Frequency of checklist review with contractor

<table>
<thead>
<tr>
<th>Previously Approved and Unchanged Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate Monitor Model Number</td>
</tr>
<tr>
<td>---------------------------------------</td>
</tr>
<tr>
<td>PLEASE NOTE: This near field monitor is operated for contractor feedback and may be stopped at any time as long as notice is sent to SFDPH.</td>
</tr>
<tr>
<td>Number of Monitors</td>
</tr>
<tr>
<td>Contractor Feedback Action Level</td>
</tr>
<tr>
<td>Frequency of monitoring</td>
</tr>
<tr>
<td>Frequency of data review with contractor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perimeter Monitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Monitors</td>
</tr>
<tr>
<td>Location of Monitors</td>
</tr>
<tr>
<td>Perimeter Action Level</td>
</tr>
<tr>
<td>Averaging Time</td>
</tr>
<tr>
<td>Frequency of monitoring</td>
</tr>
<tr>
<td>Frequency of submittal of data to SFDPH (excel workbook with data and graph with Action Level depicted)</td>
</tr>
<tr>
<td>Frequency of data review with contractor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Independent Third Party Inspection Checklist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of Inspections</td>
</tr>
<tr>
<td>Frequency of submittal of checklists to SFDPH</td>
</tr>
<tr>
<td>Frequency of checklist review with contractor</td>
</tr>
</tbody>
</table>

Please note: emails or other forms containing similar information may be used in place of this form.
APPENDIX B

Independent Third Party Inspection Checklist
This checklist is intended to assist the independent third party inspector when checking for compliance with the Revised Dust Control Plan (DCP) for the Parcel A Phase I Development located within the former Hunters Point Naval Shipyard. This Revised DCP was submitted by Geosyntec Consultants, Inc., as required for development activities within the Parcel A Phase I Project Area. The Revised DCP was prepared in accordance with the requirements of the permit process established by the City and County of San Francisco Health Code Article 31 and certain Bay Area Air Quality Management District (BAAQMD) regulations.

1. VISIBLE DUST

a. Are earth disturbing activities occurring right now? □Yes □No

 If no – is there a shut down and why? (if known)

 Comments: ____

b. Is dust emission visible beyond the property boundary? [Section 5.2.1] □Yes □No □NA

 If Yes, describe immediate action taken to shut down the source of emissions; describe location, time/duration, wind conditions, and origin of dust; describe actions taken to suppress the dust; and verify no further emissions across the property boundary following restart. See Section 4.1 for response procedure.

 Comments: ____

c. Are visible dust emissions observed within the property boundary? [Section 5.2.2] □Yes □No □NA

 If Yes, describe how many minutes dust was observed and how it was mitigated. Verify that visible dust was mitigated within the required Section 4.1.1 & 4.1.2 time periods.
d. Describe current mitigating measures at the Construction Site to suppress dust emissions at each active location. Provide any changes to existing corrective actions or engineered controls. Include dates and effectiveness of corrective action(s) when describing areas where actions have been implemented. Propose potential solutions to suppress dust emissions.

 Comments:

e. Is particulate monitoring equipment being used? [Section 5.2.2 and Appendix A] □ Yes □ No □ NA

 If Yes, is data being reported and a figure attached showing the location of the monitoring equipment. If No, please write the date of SFDPH approval to discontinue the use of particulate monitoring equipment. DATE =

 Comments:

f. During strong winds (hourly average >25 mph), are all earth moving activities including but not limited to clearing, grading, earthmoving, and excavating activities halted? □ Yes □ No □ NA

 Comments:

g. Is there a publicly visible sign with telephone number to contact regarding dust, noise, or complaints posted? [Section 5.4] □ Yes □ No □ NA

 Comments:

h. Have any complaints been received from the public? [Section 5.4] □ Yes □ No □ NA

 If yes – list follow-up action if known

 Comments:

2. CONSTRUCTION TRAFFIC [SECTION 4.3]

a. Is tracked-out soil visible on paved roads? [Section 4.3.1] □ Yes □ No □ NA

 If Yes, describe situation (i.e. location, origin of soil, mitigating measures implemented, etc.). Are vehicle tires being washed as necessary? Are gravel ramps being used? Is visible track-out material on paved public roads being removed with wet sweeping or other effective means?

 Comments:

b. Are unpaved roads in the project Construction Site being watered during construction activity frequently enough to maintain adequate wetness*? [Section 4.3.2.1] □ Yes □ No □ NA

 If No, describe situation (i.e. infraction location, origin of material, mitigating measures implemented, etc.).

 Comments:
c. Are construction vehicle speeds in excess of 10 mph within the Construction Site or 15 mph offsite within 500 feet of the project? [Section 4.3.2.1]
☐ Yes ☐ No ☐ NA

 If Yes, describe situation (i.e. location, time of day, duration of exceedance, type of vehicle, etc.).

 Comments: _____

d. Are properly constructed gravel access pads in place and being maintained at the Construction Site entrance, access points, material/equipment staging areas and temporary stockpile locations? [Section 4.3.2.1 & 4.3.2.2]
☐ Yes ☐ No ☐ NA

 Comments: _____

e. If found to be necessary, are paved roads within the Construction Site being swept with a wet sweeper at least twice daily or frequently enough to remove soil from road? [Section 4.3.2.3]
☐ Yes ☐ No ☐ NA

 Comments: _____

f. If found to be necessary, are first 500 feet of any public roadway exiting from the Construction Site being swept at least twice daily or frequently enough to remove soil from road? [Section 4.3.2.3]
☐ Yes ☐ No ☐ NA

 Comments: _____

g. Is visible dust emission observed from trucks exiting the Construction Site? [Section 4.3.3]
☐ Yes ☐ No ☐ NA

 If Yes, are the trucks covered or is the material adequately wetted*?

 Comments: _____

3. DEMOLITION [SECTION 4.4.3]

a. During demolition, are active areas being wetted prior to start of movement of any equipment?
☐ Yes ☐ No ☐ NA

 Comments: _____

b. Are disturbed areas that are inactive being stabilized or adequately wetted?
☐ Yes ☐ No ☐ NA

 Comments: _____

c. Are demolished materials being watered as needed to maintain moisture prior to moving and loading?
☐ Yes ☐ No ☐ NA

 Comments: _____
4. SITE PREPARATION AND GRADING [SECTION 4.4.1]

a. During clearing, grubbing, and grading, are surface soils being wetted to a depth of anticipated cut where equipment will be operated? □ Yes □ No □ NA

 Comments: _____

b. If disturbed areas are inactive for 7 calendar days, are surface soils being stabilized with dust palliative and water? □ Yes □ No □ NA

 Comments: _____

c. During clearing and grading, are active areas being wetted prior to start of movement of any equipment? □ Yes □ No □ NA

 Comments: _____

d. During earthwork operations, is backfill material being watered as needed to maintain moisture prior to moving? Are loader buckets being emptied slowly and the drop height from the loader bucket minimized? □ Yes □ No □ NA

 Comments: _____

e. Are loader buckets being emptied slowly and the drop height from the loader bucket minimized? □ Yes □ No □ NA

 Comments: _____

f. Prior to completion of grading, is water being applied to disturbed areas as needed to prevent visible emissions? □ Yes □ No □ NA

 Comments: _____

g. Have open space areas where finished grading is complete been hydroseeded within 7 calendar days to minimize the amount of disturbed soil at surface? □ Yes □ No □ NA

 Comments: _____

5. EXCAVATION ACTIVITIES [SECTION 4.4.4]

a. Prior to excavation, are soils being pre-wet and water added during excavation? □ Yes □ No □ NA

 Comments: _____

b. If disturbed areas are inactive for 7 calendar days, are surface soils being stabilized with dust palliative and water? If so, describe methodology. □ Yes □ No □ NA

 Comments: _____
c. During trenching operations, is backfill material being watered as needed to maintain moisture prior to moving? ☐ Yes ☐ No ☐ NA

 Comments: _____

d. Are loader buckets being emptied slowly and the drop height from the loader bucket minimized? ☐ Yes ☐ No ☐ NA

 Comments: _____

6. MATERIAL STOCKPILES [SECTION 4.4.6]

a. Are active storage piles (i.e. demolition materials, excavated materials, backfill material, import material, gravel, sand, road base, and soil) being adequately wetted* and/or covered? [Sections 4.4.1 & 4.4.] ☐ Yes ☐ No ☐ NA

 Comments: _____

b. If a storage pile is inactive for 7 calendar days, are materials being covered with a tarp, hydroseeding, and or soil stabilizers? ☐ Yes ☐ No ☐ NA

 Comments: _____

7. ADDITIONAL REQUIREMENTS FOR SERPENTINE MATERIAL [Section 4.4]

a. Is serpentine material being adequately wetted* during handling and loading? ☐ Yes ☐ No ☐ NA

 Comments: _____

b. Is post-construction stabilization of finished areas being implemented (e.g., vegetative cover, 3 to 12-inch cap of non-asbestos-containing material, or hard surface paving)? ☐ Yes ☐ No ☐ NA

 Comments: _____

c. During offsite transport of asbestos-containing waste, are vehicles adequately marked in accordance with Section 11-2-608? ☐ Yes ☐ No ☐ NA

 Comments: _____

d. Are offsite shipment records for asbestos-containing waste being maintained in accordance with Section 11-2-608? ☐ Yes ☐ No ☐ NA

 Comments: _____

8. GENERAL COMMENTS:
Notes:

1Weather information can be found at one of the two following stations:

*The Asbestos Toxicity Control Measure (ATCM) CCR Title 17, Section 93105, defines "adequately wetted" as follows:
Citations in [parentheses] reference the relevant section in the Dust Control Plan prepared by ENGEO Incorporated.

(B) If no moisture threshold is specified in a district-approved asbestos dust mitigation plan, a sample of at least one (1) quart in volume shall be taken from the top three (3) inches of a road or bare area or from the surface of a stockpile. The sample shall be poured out from a height of four (4) feet onto a clean hard surface. The material shall be considered to be adequately wetted if there is no observable dust is emitted when material is dropped.

CERTIFICATION:

I certify that I am an independent third party and I have observed, as stated and appropriate, details described in this report.

Printed Name and Date Signature