Pedestrian injuries in San Francisco: distribution, causes, and solutions

Presentation to the San Francisco Health Commission

RAJIV BHATIA, MD, MPH
DIRECTOR OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH, SAN FRANCISCO DEPARTMENT OF PUBLIC HEALTH
February 15th, 2010
National Burden of Traffic Injuries and Fatalities

- 2009 National Traffic Safety Facts
 - 33,808 deaths
 - 2,217,000 injuries
 - 4,092 pedestrian deaths
 - 49,000 pedestrian injuries

- For youth and children
 - Leading cause of death
 - 900 pedestrians deaths
 - 51,000 children injuries 5,300 hospitalizations

- Vulnerable users (walkers, bikers) with higher per trip risks than drivers or transit users

- Estimated $230 billion in economic costs

San Francisco Burden of Pedestrian Injuries and Fatalities

- ~ 800 injury collisions
- ~100 people killed or seriously injured annually
- Per resident rate of injuries (97 /100,000) five times national public health target
- Trends stable ~ 10 years

Pedestrian Injuries under-reporting in San Francisco

- State injury data (SWITRS) is based on local police reports
- Police reports have under-estimated pedestrian collisions based on comparison with hospital data
- Under-reporting is less likely for severe & fatal injuries

Causes of pedestrian injuries and fatalities

- Traffic flow
- Pedestrian activity
- Vehicle speed
- Vehicle type (e.g. trucks)
- Road layout, geometry, lighting, and crossing facilities
- Driver experience, attitudes, and behaviors
- Pedestrian age & ability
Pedestrian injury rates are higher than national public health objectives in all San Francisco age groups

- Children, the poor, the elderly, and non-auto owners are more vulnerable to traffic hazards
 - higher number of walking trips
 - physical and cognitive limits
 - more injury complications in the elderly

- Rate of pedestrian deaths in elderly San Franciscans are 4 X that of adults and 12 X that of children

Rate of Pedestrian Fatalities and Injuries (2004-2008), San Francisco, California

<table>
<thead>
<tr>
<th>Age</th>
<th>Fatality Rate per 100,000</th>
<th>Injury Rate per 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 18</td>
<td>0.5</td>
<td>73.1</td>
</tr>
<tr>
<td>18 - 64</td>
<td>1.5</td>
<td>101.7</td>
</tr>
<tr>
<td>65 and over</td>
<td>6.0</td>
<td>97.2</td>
</tr>
<tr>
<td>All ages</td>
<td>2.5</td>
<td>98.1</td>
</tr>
<tr>
<td>Healthy People 2020 Targets</td>
<td>1.3</td>
<td>20.3</td>
</tr>
</tbody>
</table>

More walking does not fully explain San Francisco’s high pedestrian injury rates

- On a per-walking-trip basis, pedestrian collisions rates are 30% higher in San Francisco than the U.S.
- Walking carries 4 times the risk of death relative to driving for San Franciscans
- Cycling is the most hazardous mode of travel
- Drivers fare much better in San Francisco than the rest of the U.S.

Injury and fatality rates per 100 million trips by travel mode: San Francisco compared to the U.S.

<table>
<thead>
<tr>
<th>Travel Mode</th>
<th>Injury Rate</th>
<th>Fatality Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States (1999-2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walkers</td>
<td>216</td>
<td>14</td>
</tr>
<tr>
<td>Car Drivers/Passengers</td>
<td>803</td>
<td>9</td>
</tr>
<tr>
<td>Cyclists</td>
<td>1461</td>
<td>21</td>
</tr>
<tr>
<td>San Francisco (2004-2008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walkers</td>
<td>281</td>
<td>8</td>
</tr>
<tr>
<td>Car Drivers/Passengers</td>
<td>297</td>
<td>2</td>
</tr>
<tr>
<td>Cyclists</td>
<td>1170</td>
<td>6</td>
</tr>
</tbody>
</table>

Majority of police identified primary collision factors are driver violations

- Police assign a “primary collision factor” to each collision based on their investigation
 - Environmental and engineering factors are not considered as collision factors in police accident investigations in SF
- Driver violations represent the majority of primary collision factor in SF
 - Pedestrian Right of Way – 39%
 - Unsafe Speed – 6%
 - Fail to observe traffic signals and signs – 5%
 - Unsafe starting or backing (up) – 5%
- Driving under the influence is the primary collision factor in ~1% of collisions

Data Sources: SWITRS (Statewide Integrated Traffic Records System) Data from the California Highway Patrol, 2004-2008.
Injuries are highly concentrated in San Francisco

- ~50% of injuries occur in 20% of census tracts and in 8% of San Francisco surface area

- Injury rates highest in lower-income neighborhoods

Several San Francisco neighborhoods and corridors have very high pedestrian injury densities

Table 4. Seven final zones showing boundaries, percent of pedestrian-injury collisions represented, and efficiency ratios

<table>
<thead>
<tr>
<th>Zone</th>
<th>Boundaries</th>
<th>Efficiency Ratio (Injury Density Ratio)</th>
<th>Percent of Pedestrian-Injury Collisions in the City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Zones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinatown/North Beach</td>
<td>Kearney to Filbert, to Stockton, to Bay, to Columbus, to Mason, to Sacramento, to Kearney</td>
<td>5.6</td>
<td>4.1</td>
</tr>
<tr>
<td>SOMA (South of Market) West</td>
<td>4th, 10th, Mission, Harrison</td>
<td>6.2</td>
<td>5.7</td>
</tr>
<tr>
<td>North Mission</td>
<td>Guerrero, 13th, 17th, Potrero, Divis Joan</td>
<td>4.5</td>
<td>3.7</td>
</tr>
<tr>
<td>Linear Zones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geary Richmond</td>
<td>Geary from Parker to 28th Avenue</td>
<td>9.9</td>
<td>1.8</td>
</tr>
<tr>
<td>Upper Market</td>
<td>Market from Van Ness to Castro</td>
<td>8.9</td>
<td>1.1</td>
</tr>
<tr>
<td>Outer Mission</td>
<td>Mission from I-280 to Geneva</td>
<td>7.5</td>
<td>0.9</td>
</tr>
<tr>
<td>Geary/Cathedral Hill</td>
<td>Geary from Van Ness to Baker</td>
<td>10.4</td>
<td>1.3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>18.6</td>
</tr>
</tbody>
</table>

Pedestrian injury collision models can identify modifiable causes at the city level

Predictors of differences in injury rates among census tracts in San Francisco

- Traffic volume (+++)
- Arterial streets (++)
 - w/o surface transit
- Neighborhood commercial zoning (++)
- Employees (++)
- Residents (++)
- Land area (--)
- Below poverty level (+)
- Age 65 and over (-)

Source: California Highway Patrol, Statewide Integrated Traffic Records System

High proportions of drivers exceed the speed limit

<table>
<thead>
<tr>
<th>Posted speed limit</th>
<th>Observations</th>
<th>Estimated mean speed</th>
<th>Percent exceeding speed limit</th>
<th>Estimated mean speed of those exceeding limit</th>
<th>Percent 5 mph or more over speed limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 mph</td>
<td>152,640</td>
<td>25 mph</td>
<td>56%</td>
<td>30 mph</td>
<td>23%</td>
</tr>
<tr>
<td>30 mph</td>
<td>61,388</td>
<td>26 mph</td>
<td>31%</td>
<td>34 mph</td>
<td>10%</td>
</tr>
<tr>
<td>35 mph</td>
<td>29,626</td>
<td>31 mph</td>
<td>26%</td>
<td>39 mph</td>
<td>8%</td>
</tr>
</tbody>
</table>

Source: SFDPH analysis based on sample of San Francisco Municipal Transportation Authority speed survey data from 2004-2009
Travel speeds are a fundamental cause of collisions

- **Speeds affects**
 - awareness of pedestrians
 - Control of vehicle
 - Stopping distance

- On urban roads, reducing mean speed by 1 mph reduces injury collisions by 2 – 7%

Speeds determine pedestrian injury severity

- Collision force increases with vehicle mass and speed (Force = mass X velocity^2)
- Small increases in impact speed translate into large increases in fatality risks
- Seniors highly vulnerable to speed

Risk of pedestrian fatality by impact speed and age group

Annual hospital costs for severe pedestrian injury = Approx. $15 million/annually

76% of the total cost was paid for by public funding (Medicare, MediCal, patients)

Obstacles to a pedestrian safety culture in the United States

- Transportation system relies on the individual to protect themselves—“Mistakes” result in fatal consequences,
- System does not account the vulnerability of walkers or the limited abilities of children and elderly
- System often privileges motor vehicle needs over walking, bicycling, and public transit (e.g. maximizes flow and speed)
- Collision analysis does not investigate physical and engineering factors (e.g. design speed)
- Proven protective engineering and enforcement measures are not being utilized
Many proven effective strategies for reducing injury frequency and severity

- **Speed reductions:**
 - 20 mph Home Zones
 - Traffic Calming
 - Automated Speed Enforcement

- **Engineering counter-measures**
 - Median Refuge Islands
 - Signalized Cross-walks
 - Pedestrian crossing phase
 - Lighting
Proven Safety Engineering Countermeasures

- Advance limit lines with high visibility crosswalks
- Center Median improvements
- Sidewalk “bulb-outs”
- Improved Lighting
- Raised Crosswalks
- Pedestrian Countdown Signals (PCS)

Source: San Francisco Municipal Transportation Agency
Altering roadway dimensions and geometry

- Reducing lanes (road diets) can lower traffic flow and pedestrian risks
- Narrowing lanes may reduce speed
- Widening sidewalks, parking, and bicycle lanes buffer pedestrians from traffic

Source: San Francisco Municipal Transportation Agency
Citywide Traffic Calming Planning Studies (MTA)

Source: San Francisco Municipal Transportation Agency
Research also challenges some conventional wisdom: No protection from crosswalks at uncontrolled intersections

- Marked crosswalks do not offer a safety benefit on low traffic volume streets and increase hazards on high traffic volume streets.

- Signalization, traffic calming or other safety measures warranted for crosswalks at uncontrolled locations.
20 mph or less “home zones” can significantly reduce road injuries in residential areas

- Researchers analyzed longitudinal changes in road injuries from 1986 to 2006 within ~120,000 road segments in London to examine effect of engineered 20 mph “home zones”
- Observed ~42% reduction in road casualties, adjusting for time trends
- Greater reductions for younger children and for fatal and serious injuries
- No evidence of migration of injuries to adjacent areas

Source: Grundy et al. BMJ 2009;339:b4469
The international *Vision Zero* movement argues for greater responsibility for transportation system designers

- System designers bear the ultimate responsibility for transportation safety.
- The system should be designed to prevent levels of violence intolerable to the human body (excessive forces) for all users.
- Systems designers can and must account for the expected behaviors of road users.
December 20th 2010 Executive Directive on Pedestrian Safety –

- Establishes new medium (25% by 2016) and long range (50% by 2021) reduction targets for serious and fatal injuries

- Requires (1 year) actions
 - 15 mph school zone speed limits
 - 20 mph home zones
 - High risk corridor engineering program
 - Enhance Pedestrian Injury Prediction Model (SFDPH)
 - Develop Pedestrian Environmental Quality Index (SFDPH)
 - Best practices research (All)

- Inter-agency workgroup
- Pedestrian Safety Plan
Opportunities Generated by the Executive Directive

- Elevates the importance of safety for walkers as a priority need for a sustainable 21st century city.

- Establishes the City’s first official performance measure and long range target for pedestrian safety.

- Recognizes the need for and creates the opportunity for collaboration among multiple City agencies and external stakeholders.

- Can leverage resources for successful practices.

- Identifies the importance of citywide design and policy solutions.
Improvements to the San Francisco Pedestrian Injury Prediction Model (SFDPH)

- Builds on recently published area-level model
- Will analyze causes at the intersection-level
- Adapts lessons from FHWA best practices and other research
- Limited pedestrian activity data is an important model gap
Development of the Pedestrian Environmental Quality Index

SFDPH Pedestrian Environmental Quality Index:

- Quantitative, observational survey instrument based on street segment and intersection level indicators
- Will be validated against pedestrian flow and injury frequency
- Potential uses to focus safety investments in land use and transportation planning

More info at: www.sfphes.org/HIA_Tools_PEQI.htm
Walk First Project: A inter-agency partnership for walking

- **Objectives:**
 - citywide map of key pedestrian streets and zones;
 - method and criteria for prioritizing pedestrian improvements;
 - five case study and concept designs;
 - capital project list of recommended pedestrian improvements for those case studies;
 - draft General Plan policies relating to walking and the pedestrian environment; and
 - strategies for safe and active walking to be included into the San Francisco Transportation Plan.

- **Partners:**
 - San Francisco Municipal Transportation Agency
 - San Francisco County Transportation Authority
 - San Francisco Planning Department

- **Funding Source:**
 - California Office of Traffic Safety

- **DPH Staff Lead:**
 - Ana Validzic
Potential future local policy alternatives

- Reduce urban traffic speeds
 - Speed limits higher than those recommended by WHO
 - Increase resources for traffic calming infrastructure
 - Enable automated speed enforcement
- More robust injury data collection and analysis
 - Include environmental factors
- Develop a minimum standard of safety countermeasures for future development
- Require integration of safety countermeasures whenever roadways are renovated
Some considerations for the Health Commission

- Schedule for updates on implementation of Executive Directive

- Specific Roles For SFDPH staff
 - Facts research / assessment
 - Education/ awareness
 - Support of community led activities
 - Support of planning and design activities
 - Implementation of Executive Directive

- Updates on research

- Departmental policy and positions on safety issues